If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=140
We move all terms to the left:
x^2+8x-(140)=0
a = 1; b = 8; c = -140;
Δ = b2-4ac
Δ = 82-4·1·(-140)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{39}}{2*1}=\frac{-8-4\sqrt{39}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{39}}{2*1}=\frac{-8+4\sqrt{39}}{2} $
| 5x-33=12x+4 | | 4xX=18 | | 10x2=66x+28 | | 4(5x+1)=1/5(20x+16)+16 | | d÷(2d+1)=1÷3 | | d/(2d+1)=1/3 | | F(-5)=-2x+7 | | 500*12=n | | 5-3c=8+3(4c-1) | | (2m+3)(2m-3)=0 | | 0=0.2x^2–0.4x–0.6 | | Y=-0.2x^2-0.4x-0.6 | | 1/3a=40+14 | | 3(2^3w+4)=5(4^w−1) | | -6=b/18,b= | | 8x²+25x-200=0 | | 4x+6=9x/2 | | 2/t-3t/4=7 | | 35-2x=23 | | -1=6+0.5x | | 40+x=x-8-4x | | s*8=40 | | −r+8(−5r−2)=0 | | (x)/(10)+6=8 | | 10=11-(-3+x) | | 4x-288x^-2=0 | | a+(-1/2)=-5.5 | | 7(p-3)=11 | | a-5/1=1.7 | | 4x+1/x+1-3=12/x²-1 | | -n/2=6 | | -8.4=k+.06 |